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Modifications to acoustic eigenmodes in combustion chambers such as those of liquid
propellant rocket engines, produced by spatial variations of density and sound speed that
arise mainly through progress of combustion processes, are analyzed by using a variational
method. The variational principle shows that the eigenvalue is the ratio of a weighted
acoustic kinetic energy to a weighted acoustic potential energy, and the eigenfunction is
the minimizing function of this ratio. A sample calculation is made for the case in which
variations of the properties occur dominantly in the longitudinal direction, with lower
temperatures and higher densities prevailing near the injector. The results of the calculation
exhibit two major characteristics: the longitudinal density variation aids transfer of acoustic
kinetic energy from a lower mode to the adjacent higher mode, so that the pure transverse
modes have substantially larger reductions (sometimes exceeding 50%) of their eigenvalues
than the combined modes; and variations of the acoustic pressure gradients are found to
be larger in high-density regions, so that the acoustic pressure amplitude for purely
tangential modes is found to be much higher near the injector than near the nozzle. The
higher head acoustic pressure may contribute to the greater sensitivity of acoustic instability
to characteristics of the flames near the injectors, as commonly found in engine tests. The
improved acoustic eigensolutions can also be helpful in sizing damping devices, such as
baffles or acoustic liners.
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1. INTRODUCTION

Acoustic instabilities in liquid-propellant rock engines are phenomena in which oscillations
of the chamber pressure at well-defined frequencies and mode shapes that correspond to
the acoustic modes of the cavity are amplified mainly through interactions with
combustion [1–3]. Acoustic waves in these and other combustion devices possess various
modes of oscillation that are usually analyzed under the assumption that the mean field
is uniform and stationary, so that the acoustic modes are described by homogeneous
Helmholtz equations. In most of the linear and non-linear analyses developed to date [4–7],
acoustic pressure is expressed as a sum of classical Helmholtz eigenmodes with non-steady
amplitudes. However, this assumption must have inaccuracies because of the presence of
combustion, which can give rise to order-of-magnitude variations of temperature in the
combustion chamber. In general, acoustic pressure tends to oscillate faster in a
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higher-temperature medium because of the increased sound speed, and it is of interest
to find what the oscillation frequencies will be and what the acoustic pressure
distributions will look like when an acoustic medium is strongly non-uniform in
temperature and in other thermodynamic variables. This paper presents a method
of analysis to address these questions and attempts to draw general conclusion
concerning what modifications of acoustic characteristics should be expected in
non-uniform media.

A few investigations have been reported previously concerning the influences of
non-uniformities on acoustic modes in chambers. Most of these have been restricted to
one-dimensional mean-field variations that occur only in the longitudinal direction [8–15].
When the variations occur only in one dimension, it is straightforward to transform the
variable in that direction to an inversely mass weighted co-ordinate, in such a way that
a Helmholtz equation with variable sound speed is retrieved in the transformed variables.
More conventional analyses then apply in the transformed co-ordinates, although most
of the studies cited above do not take advantage of this simplification. Such a simple
transformation of variables cannot be employd for general, three-dimensional variations
of mean properties. In the present work, a variational approach [16], that is capable of
accounting for these three-dimensional mean-field distributions and not previously applied
to combustion instability is introduced. Nevertheless, for the purpose of drawing readily
comprehensible qualitative conclusions form the results, attention will be focused on
influences of purely longitudinal mean-property variations. For acoustic modes having
high-frequency axial components, a WKB approach yields such qualitative information
[9], but attention here is focused instead on situations involving low-frequency longitudinal
mode components, the fundamental or first or second harmonic, which are more
commonly encountered in combustion instability.

With three-dimensional variations of mean-field properties, numerical methods, such as
finite element methods [17], can be invoked for finding the acoustic modes. Although these
methods can provide accurate answers for specific chambers when the mean fields are
known, they do not lend themselves easily to drawing general conclusions about qualitative
behaviors. There is empirical information on qualitative differences from uniform-property
behavior. For example, there are indications that observed frequencies are often lower than
calculated from assumptions of uniform chamber properties [11, 18]. A possible reason for
this will be obtained in the present study, and a method for estimating the magnitude of
the effect will be given.

The typical acoustic instability involves two-time behavior, in which combustion
produces an amplification time that is long compared with the acoustic time. Certain
acoustic modes then grow slowly in amplitude, in a manner that can be described by a
linear analysis. For calculating this linear amplification, it is important to have accurate
representations of the acoustic mode shapes and their frequencies. This information is also
needed for non-linear analyses that address bifurcation phenomena [19, 20]. Although
there are resonance-tube applications for pulse combustors in which influences of
combustion and non-uniformities on the acoustic modes can be negligible [20], in
liquid-propellant rocket chambers these influences can often be important. An objective
of the present study is to provide a method for obtaining the leading-order acoustic
behavior, the acoustic frequencies and mode shapes, needed for pursuit of such non-linear
analyses for liquid-propellant rockets, which had to be simply postulated in our
recent investigation [21] of the subject. In addition, non-Helmholtz eigenmodes may
lead to a change in the orthogonality, giving rise to additional terms in describing
non-linear analyses that result from interaction of acoustics with non-uniform steady mean
fields.
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2. FORMULATION

2.1.  

A detailed derivation of the conservation equations, generalizing simpler results [22] and
applicable to multiphase viscous reacting flows, is given by Kim [23]. In the notation
adopted here, all variables carrying a ‘‘tilde’’ are dimensional. Non-dimensionalization of
the variables will be introduced in the next subsection. The conservation equations for
pressure and velocity, that can include both acoustic and entropy waves, can be written
as

k̃f
Dp̃
Dt	

+9	 · ũ=Q	 , r̃
Dũ
Dt	

+9	 p̃ =F	 , (1)

where the overall frozen adiabatic compressibility k̃f is

k̃f 0
1
r̃ 01r̃

1p̃1s̃,Yji

=
1

r̃ã2
f
. (2)

Here the material derivative is defined as D/Dt	 0 1/1t	 + ũ · 9	 .
The source terms Q	 and F	 arise from a number of effects. The energy source term Q	 ,

denoting the rate of heat transfer per unit mass, includes various contributions from
molecular transport, contributions from relative velocities, contributions from phase
change and contributions from exothermic chemical reaction. The exothermic chemical
reaction is often the most important among these contributions. In a similar manner, F	
represents the momentum transfer resulting from viscous stresses and from the relative
velocities of different phases. Both Q	 and F	 thus contain some higher-derivative terms,
included here with sources. One proper way to evaluate k̃f in multiphase flows is given in
Appendix A.

2.2. -  

It is important to recognize that variations of the mean field and of the acoustic field
scale differently, since the mean field is measured by a characteristic flow velocity, whereas
the acoustic field refers to a characteristic sound speed. Attention is focused on the
condition of a small Mach number, thereby providing a scaling which ultimately yields
a substantially simplified wave equation.

To proceed with non-dimensionalization, reference values for the velocity and density
need to be selected. In non-uniform acoustic media, choice of the reference values is not
unique. However, any unambiguous choice with a proper order of magnitude will yield
the same result. First, the reference density and adiabatic compressibility are obtained by
volumetric averages in the steady pre-instability state,

r̃0 =gV

r̃ dx̃
V	

, k̃0 =gV

k̃f dx̃
V	

. (3)

From r̃0 and k̃0, the characteristic velocity scales for the acoustic and mean fields are found
to be

ã0 =1/(k̃0 r̃0)1/2, ũ0 = m̃/r̃0, (4)

where the area-averaged axial mass flux m̃ is assumed to be constant in the undisturbed
state, as it is during steady motor operation. Then the Mach number M is defined as

M0 ũ0 /ã0 = m̃/r̃0 ã0 = m̃(k̃0 /r̃0)1/2, (5)



Integration volume

D
~

Tb
~

L
~

Tu
~

. .   . . 824

which is also a ratio of a characteristic acoustic time to a characteristic flow time. In
addition, the characteristic length scale is the rocket chamber length L	 .

We define the non-dimensional space and time co-ordinates

x0
x̃
L	

, t0
ã0 t
L	

. (6)

The non-dimensional dependent variables are

p0
p̃

r̃0 ã2
0
, u=

ũ
ã0

, r0
r̃

r̃0
, k=

k̃f

k̃0
. (7)

On the other hand, momentum transfer of the mean field occurs in a characteristic flow
time. In the mean field, appropriate non-dimensionalizations for the velocity and for the
pressure variation are

ps =
p̃s

r̃0 ũ2
0
=M−2 p̃s

r̃0 ã2
0
, us =

ũs

ũ0
=M−1 ũs

ã0
, (8)

where the subscript s denotes the steady field variables. In addition, with the
non-dimensionalization of equation (7), there exists a constant mean non-dimensional
static pressure p0 of order unity. Finally, the source term Q	 and F	 in equation (1) are scaled
as

Q0
L	 Q	
ã0

, F0
L	 F	
ã2

0
, (9)

while the mean source terms are alternatively scaled as

Qs =
L	 Q	 s

ũ0
=M−1 L	 Q	 s

ã0
, Fs =

L	 F	 s
ũ2

0
=M−2 L	 F	 s

ã2
0

. (10)

Figure 1. Schematic diagram of liquid propellant rocket engine and integration domain.
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2.3.      

To begin the analysis, it is necessary to decompose the dependent variables into sums
of the mean and acoustic components. The acoustic field can be sought as an expansion
in powers of a small parameter o that measures the amplitude of the acoustic pressure
relative to the mean static pressure. According to the scalings described above, we seek
a solution in the form

p= p0 +M2ps + o&1 + o2&2 + · · · ,

u=Mus + ov1 + o2v2 + · · · ,

r= rs + o71 + o72 + · · · ,

k= k2 + ok1 + o2k2 + · · · ,

Q=M(Qs + oq1 + o2q2 + · · ·),

F=M2(Fs + of1 + o2f2 + · · ·). (11)

The additional terms involve various higher power of M and o.
Although not pursued in the present analysis, it is worthy of note that a proper scaling

of o with the Mach number M enables us to extend the present analysis to non-linear
bifurcation analysis. The scaling, which was already recognized by Margolis [20] for the
resonance-tube problem, is also applicable to combustion instabilities of rocket engines.
In his work, the small parameter o was scaled as o=zM and the slow time t
 = o2t=Mt.

Substituting equation (11) into equation (1) and collecting the terms of order o, we
obtain linear homogeneous equations for the leading-order acoustic pressure and velocity
fields, &1 and v1, in the form

rs
1v1

1t
+9&1 =0, ks

1&1

1t
+9 · v1 =0. (12)

These equations describe the acoustic profiles of pressure and velocity with non-uniform
distributions of the density and adiabatic compressibility.

At the leading order, the boundary condition for equation (12) is taken to be

n · 9&1 =0. (13)

In principle, this homogeneous Neumann condition is applicable only to solid walls
through which no heat and mass transfer occurs, while the boundaries at the injector and
at the entrance to the nozzle usually have finite pressure gradients. However, the pressure
gradients at these boundaries generally are sufficiently small so that equation (13) is the
best choice for defining the first approximation to the acoustic modes.

Since a differential equation with a single dependent variable is often easier to handle
than a pair of equations, we eliminate v1 from equation (12). The acoustic equation is
thereby found to be

9 · 09&1

rs 1− ks
12&1

1t2 =0. (14)

Since each eigenmode of the acoustic pressure oscillates harmonically in time, equation
(14) can be further simplified by introducing the complex representation of the acoustic
pressure

&1 =Re {c exp(ilt)}, (15)
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where a non-dimensional frequency l is to be determined as a part of the solution. The
dimensional acoustic frequency ṽ is directly related to l by

ṽ=
l

L	 X 1
k̃0 r̃0

. (16)

The corresponding acoustic velocity can be found from the first expression in equation (12)
to be

v1 =
Re {i9c exp(ilt)}

lrs
. (17)

Upon substitution of equation (15) into equation (14), the governing equation for c is
found to be

9 · 09c

rs 1+ l2ks c=0, with n · 9c=0 at boundaries. (18)

If rs and ks are constant thorughout the rocket chamber, then equation (18) reduces to
the ordinary Helmholtz equation with wave number k	 = l/L	 . Equation (18) is available
from a number of sources [24, 25].

3. APPROXIMATION METHOD

3.1.  

For notational brevity, equation (18) is symbolically expressed as

Lc= sMc, (19)

where a differential operator L, a weighting function M and an eigenvalue s are defined
as

L0−9 · (r−1
s 9), M0 ks , s0 l2. (20)

In what follows, an approximation method based on a variational principle will be
discussed; details can be found in Meirovitch [16], Morse and Feshbach [26], and Gelfand
and Fomin [27].

As a first step, the inner product is defined by

�f, g�0gV

fg dx. (21)

It can be easily shown through integration by parts that

�8, Lc�=−gV

89 · (r−1
s 9c) dx=gV

r−1
s 98 · 9c dx, (22)
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which leads to �8, Lc�= �L8, c�. This result states that the problem is self-adjoint.
For self-adjoint problems, the eigenvalues satisfy the relation

s=
�c, Lc�
�c, Mc�=

gV

r−1
s 9c · 9c dx

gV

ks c
2 dx

, (23)

and the corresponding first-order variational principle assumes the form

d[s]= d$�c, Lc�
�c, Mc�%=0, (24)

where d[] denotes the variational operation for c. The eigenfunctions ci and their
corresponding eigenvalues si can be obtained approximately from equations (23) and (24).

It is useful to recall several important properties of self-adjoint systems. First of all, the
eigenfunctions are orthogonal with respect to their weighting function, i.e.,

�ci , Mcj �=gV

Mci cj dx= dij , i, j=1, 2, 3, . . . , (25)

where ci ’s are normalized in such a way that �ci , Mci �=1. In addition, the operator
L is positive semi-definite because �8, L8�e 0 for any 8, which can be easily seen from
equation (22). From equation (23), all eigenvalues are then real and non-negative. The zero
eigenvalue corresponds to the equality in the positive semi-definiteness. The corresponding
eigenfunction is c=(fV ks dx)1/2 and represents bulk pressure oscillations in the chamber
with an infinitely long period. We exclude this trivial case and consider L to be positive
definite. Whenever the operators L and M are self-adjoint and positive-definite,

d2$�c, Lc�
�c, Mc�%=

2�d[c], (L− sM)d[c]�
�c, Mc� q 0, (26)

that is, the second variation is positive-definite too [27]. The eigenvalue si is, therefore, a
local minimum for the eigenfunction ci with respect to the variation of ci .

3.2. 

Solving the eigenvalue problem in equation (19) directly in closed form is usually not
feasible, and the main interest lies in an approximate solution. The variational approach
then becomes particularly attractive because a solution can be constructed from a space
of admissible functions. Advantages arise from the fact that admissible functions need only
satisfy the geometric boundary condition in equation (18) and be twice differentiable, and
that such admissible functions are plentiful.

The Rayleigh quotient is defined as

R(8)=
�8, L8�
�8, M8�, (27)

where 8 is a trial function from the space of admissible functions. If the trial function is
an eigenfunction, its first variation vanishes and the Rayleigh quotient becomes the
corresponding eigenvalue. For practical reasons, we cannot consider the entire space of
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eigenfunctions, but only a finite-dimensional subspace, where the subspace is spanned by
the n linearly independent admissible functions, f1, f2, . . . , fn , from a complete set. For
algebraic convenience, the admissible functions can be normalized such that �fi , fi �=1.
Any element 8(n) in an n-dimensional subspace can be expanded in the finite series

8(n) = s
n

i=1

c(n)
i fi , (28)

where c1, c2, . . . , cn are coefficients to be determined. For a given set of fi ’s, the Rayleigh
quotient is now expressed as a function of ci ’s. Then the first-order variational principle
in equation (24) is effectively replaced by the stationary condition

1R
1ci

=0, i=1, 2, . . . , n, (29)

which ultimately determines the ci ’s. The 8(n) satisfying the stationarity condition is an
approximation to the exact solution.

Substituting the linearly expanded trial functions in equation (28) into equation (27),
we can write the Rayleigh quotient in the discretized form

R=

s
n

i, j=1

ci Lij cj

s
n

i, j=1

ci Mij cj

, (30)

where the known constant matrices Lij and Mij are

Lij = �fi , Lfj �=gV

r−1
s 9fi · 9fj dx, Mij = �fi , Mfj �=gV

ks fi fj dx. (31)

Then it is not difficult to show that satisfaction of the stationarity conditions in equation
(29) is equivalent to solution of the linear algebraic eigenvalue problem

Lij c(n)
i = s(n)Mij c(n)

i , (32)

where s(n) is the stationary value of the Rayleigh quotient in the n-dimensional subspace.
The solution of the eigenvalue problem in equation (32) consists of n pairs of the
approximate eigenvalues s(n)

r and the associated unit eigenvectors c(n)
i,r (r=1, 2, . . . , n) that

are normalized by the orthonormality ai
i, j=1 c(n)

i,r Mij c(n)
j,s = drs . Conventionally the subscript

index r denoting the eigensolutions is ordered from the solution with the smallest
eigenvalue. As n increases, the approximated eigensolutions approach the exact
eigensolutions.

Although convergence is guaranteed if the admissible functions fi are selected from a
complete set, the rate of convergence depends on the nature of the admissible functions.
Hence, the choice of the admissible functions can be very important. The best choice of
the admissible functions for equation (18) is obviously a set of Helmholtz eigenfunctions
satisfying the Neumann boundary condition. It is also relevant to note that convergence
of the eigenvalues is much faster than that of the eigenfunctions. Because the first variation
vanishes for the exact solutions, the eigenvalues have only second-order error for
first-order error of the eigenfunctions. In addition, the approximated eigenvalues converge
to the actual values from above, since the second variation is positive-definite. These
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properties of the eigenvalue’s convergence enable us to adopt a systematic way of
monitoring the convergence. The number of admissible functions, n, can be gradually
increased from a small number to a certain number satisfying whatever convergence
requirement is imposed. More accurate eigenvalues can subsequently be obtained by using
the Richardson or Padé extrapolation [28].

4. A SIMPLIFIED MODEL PROBLEM

4.1.    

In many rocket engines, transverse variations of the steady profiles of the temperatures
and other properties are small compared with those in the longitudinal direction, and it
becomes reasonable to introduce the approximation that variations of the density and
adiabatic compressibility occur only longitudinally. Combined with this assumption, the
additional fact that Helmholtz eigenfunctions are separable in the transverse and
longitudinal further simplifies the calculation procedure.

As a first step in computing eigensolutions for axisymmetric chambers, we choose m× n
addmissible functions from a set of Helmholtz eigenfunctions, where m is the number of
the chosen transverse modes, and n is the number of the longitudinal modes. The
admissible functions can then be arranged in such a way that

fi =Up (r, u)Lq (z), i= np+ q, p=1, 2, . . . , m, q=1, 2, . . . , n, (33)

where Up is the pth normalized Helmholtz transverse mode, and Lq the qth normalized
longitudinal mode. By substituting equation (33) into equation (31), a linear algebraic
eigenvalue problem can be constructed in the form of equation (32). For two arbitrarily
chosen admissible functions

fi =Up Lq , fj =Ur Ls , i= np+ q, j= nr+ s,

the matrices Lij and Mij become

Lij =gV

r−1
s 9fi · 9fj dx= dpr $k2

p g
1

0

Lq Ls dz
rs

+g
1

0

1
rs

dLq

dz
dLs

dz
dz%,

Mij =gV

ks fi fj dx= dpr g
1

0

ks Lq Ls dz, (34)

where kp is the non-dimensional wave number of Up , and use has been made of

−g
R

0 g
2p

0

9Up · 9Ur r dr du= k2
p dpr , g

R

0 g
2p

0

Up Ur r dr du= dpr .

It is seen from equation (34) that the matrices Lij and Mij are block-diagonal, where each
non-zero block corresponds to a different transverse mode. Since the linear eigenvalue
problem is meaningful only if p= r, each block forms a separate eigenvalue problem. In
other words, for a given transverse mode, all components of the eigenvector corresponding
to any other transverse mode vanish. The resulting transverse eigenmode shape thus
remains the same as the Helmholtz eigenmode. The problem now reduces to that of
determining only the longitudinal modes for a given transverse mode.
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4.2.   

To generate illustrative results, the acoustic medium is assumed to be a mixture of gas
and liquid phases far from critical conditions, so that the gas phase is a mixture of ideal
gases. The aspect ratio of the combustion chamber is taken to be unity, D	 /L	 =1, where
D	 is the chamber diameter. Attention is focused on the first tangential mode, usually the
most common acoustic mode observed in liquid-propellant rocket engines, for example.
Then the functional form of the transverse mode is

U(r, u)=
J1 (k11 r) sin u

6p g
1/2

0

J2
1 (k11 r) dr7

1/2
, (35)

where k11 is the non-dimensional wave number for the first tangential mode; k11 =3·6826
for D	 /L	 =1. A set of admissible functions are

fi =6UUz2 cos [(i−1)pz]
if i=1,
if i$ 1.

(36)

The density profile is assumed to be

1
rs

=1− 3
4 cos pz, (37)

for which the density at the exit is only one-seventh of that at the injector, which can be
reasonable for some liquid-propellant rockets. Such a large decrease in density can be
caused by the decrease in mass fraction of the liquid phase and by the increase in
temperature during combustion. The density variation is approximated in the form of
equation (37) because the dominant Fourier component of the density variation is the first
harmonic. As discussed in Appendix A, the adiabatic compressibility kf is proportional to
volume fraction of the gas phase and inversely proportional to the chamber pressure. Since
the volume fraction of the liquid phase is always small and the variation of the mean
chamber pressure is of order M2, the adiabatic compressibility is taken to be kf =1 in this
illustrative example.

From the above assumptions, the matrices Mij and Lij are found to be

k2
11 + (i−1)2p2 if i= j,

−
3z2

8
k2

11 if ij=2,
Mij = dij , Lij =g

G

G

G

G

F

f

−3
8 [k2

11 + (i−1) (j−1)p2] if =i− j ==1 and ij$ 2
(38)

0 otherwise.

As mentioned in the introduction, transformation into an inversely mass-weighted
co-ordinate may be considered in order to eliminate the density variation in the modified
Laplacian operator. Such transformation will result in a simpler formulation if kf and rs

are not constant in the flow field. Then the resulting modified Helmholtz equation involves
only the variation of the kf /rs term. If the kf /rs term is constant throughout the flow field,
the modified Helmholtz equation is further simplified to recover the original Helmholtz
equation in the transformed co-ordinate. However, the present case does not fall into either
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T 1

Comparison of the eigenvalues with and without the variable density profile. In each box, the
smaller number on the top is the computed eigenvalue with the variable density profile, while
the larger number at the bottom is that corresponding to the Helmholtz eigenvalue (uniform

chamber)

1st Tangential 2nd Tangential 1st Radial 3rd Tangential
1T 2T 1R 3T

J1 (k11 r) sin u J2 (k21 r) sin 2u J0 (k01 r) J3 (k31 r) sin 3u

Pure transverse 8·566 17·267 24·219 27·933
0L 13·562 37·315 58·728 70·600
1st Longitudinal 21·624 43·856 58·228 65·187
1L 23·431 47·185 68·597 80·470
2nd Longitudinal 41·288 66·723 90·948 102·99
2L 53·040 76·793 98·206 110·08
3rd Longitudinal 77·511 98·692 120·23 133·46
3L 102·39 126·14 147·55 159·43

of the two cases, and does not reduce to any simpler formulation by transforming into
an inversely mass-weighted co-ordinate.

The method is also capable of calculating the acoustic eigenmodes in three dimensions
and, as indicated in section 3, the convergence is guaranteed if the admissible functions
are chosen from a complete set. For rocket-engine applications, it will be the best to choose
the admissible functions from a complete set of spherical harmonic functions.

4.3.       

The results of the calculation are shown in the first column of Table 1 for the eigenvalues
of the first four longitudinal eigenmodes and in Figures 2 through 4 for the longitudinal
variations of their eigenfunctions. Convergence of the eigenvalues with four-digit accuracy
is achieved by employing less than 12 trial functions. For the pure first tangential mode,
denoted by 1T-0L, the calculated eigenvalue is about 2/3 of the corresponding Helmholtz
eigenvalue. If the acoustic frequency is estimated by equations (16) and (20), the resulting
frequency will be about 20% smaller than its Helmholtz counterpart (uniform chamber),
comparable to the reduction observed in some measurements [18]. For the combined
modes of the first tangential, respectively denoted by 1T-1L, 1T-2L and 1T-3L, the
resulting eigenvalues are smaller than the corresponding Helmholtz eigenvalues by
10–25%. Variations of the acoustic eigenfunctions 8(n)

i with different numbers of trial
functions are shown in Figures 2 and 3 for 1T-0L and 1T-1L, respectively. Convergence
of the functional shapes is achieved by less than 10 trial functions, although the degree
of convergence is not as good as that for the eigenvalues. However, the most pronounced
feature of the resulting acoustic eigenfunctions is that the gradients of the acoustic pressure
amplitudes are much steeper near the chamber entrance than near the exit. In other words,
the variations take place dominantly in the high-density region. The same characteristics
are found in Figure 4 for the higher acoustic modes.

To explain the results obtained from the sample calculation. it is convenient to consider
the total acoustic energy e, which is defined by

e= 1
2 gV

ks &2
1 dx+ 1

2 gV

rs v1 · v1 dx, (39)
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where the first and second parts of the right-hand side represent the potential and kinetic
acoustic energy, respectively. Taking only the real parts of the acoustic pressure and
velocity in equations (15) and (17) and substituting into equation (39), the total acoustic
energy is expressed, in terms of c, by

e= 1
2 gV

ks c
2 dx+

sin2 (lt)
2 $gV

9c · 9c

l2rs
dx−gV

ks c
2 dx%. (40)

Because there is no acoustic energy source or sink in the leading-order acoustic equation,
the total acoustic energy must be constant in time. This can be satisfied only if the term
involving sin2 (lt) in the above equation vanishes. The resulting equation then turns out
to be identical to equation (23) which expresses the eigenvalue s as a ratio of volumetric
integrals. The fact that equation (23) states conservation of the total acoustic energy is
rather obvious because equation (23) is obtained by an energy integral. Of course,
amplification or attenuation mechanisms will cause the acoustic energy to vary [22].

If an acoustic medium is uniform, the Helmholtz eigenfunctions are the minimizing
functions of the functional given in equation (23). As the acoustic medium is perturbed
from a uniform state, the acoustic pressure amplitude must adjust its functional form in
order to minimize the functional in equation (23). In this sample calculation, the
non-dimensional adiabatic compressibility ks is constant, so that the minimization process
occurs mainly in the numerator. This can be achieved by distributing more evenly the

Figure 2. Longitudinal profiles of the acoustic pressure of the pure first tangential mode (1T-0L) for various
numbers of trial functions with n=0 corresponding to the Helmholtz eigenfunction. ——, n=10; · · · · , n=6;
— · — · , n=3; — – — – —, n=2; – – – –, n=0 or 1.
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Figure 3. Longitudinal profiles of the acoustic pressure of the combined mode of the first tangential and the
first longitudinal (1T-1L) for various numbers of trial functions with n=0 corresponding to the Helmholtz
eigenfunction. ——, n=10; · · · · , n=6; — · — · —, n=3; — – —, n=2; – – – –, n=0.

integrand r−1
s 9c · 9c throughout the integral domain. Therefore, the acoustic pressure

gradient 9c will be larger in the high-density region, and smaller in the low-density region.
Such behavior can be observed in Figure 4, where a much steeper variation of the acoustic
pressure can be found in the high-density region near the entrance of the combustion
chamber. This type of acoustic-pressure profile was reported experimentally already in
early work by Levine [29], in which the variation was so pronounced that the measured
pressure signal at the entrance of the nozzle section showed negligible pressure fluctuations.
The nodes of the acoustic modes are consequently shifted toward the high-density region
as observed in acoustic ducts with axial temperature gradient [15]. For instance,
considering the combined mode of the first tangential and the first longitudinal (1T-1L),
the Helmholtz eigenfunction (uniform chamber) predicted the location of the node at the
middle of the chamber length, i.e., z=0.5, as seen from the dashed line of Figure 3. The
solution which includes the variable density profile shows that the node is located at about
z=0.25, thereby predicting a significant shift of the node toward the injector side. Such
nodal shifts are also observed in Figure 4 for the higher combined modes, 1T-2L and
1T-3L.

It may also be noted that the matrix Lij is tridiagonal, a result which arises from the
fact that the density profile in equation (37) contains only the first harmonic term. For
this type of density profile, exchange of the kinetic acoustic energy occurs only to adjacent
modes, which follows from the tridiagonality of the matrix Lij . If an acoustic mode receives
energy from the adjacent lower mode, it passes a portion of its acoustic energy to the
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adjacent higher mode, thereby forming a kind of acoustic kinetic energy cascade. This type
of energy exchange mechanism explains why the pure first tangential mode has the largest
eigenvalue shift from the corresponding Helmholtz eigenvalue among the pure and
combined first tangential modes. The mode 1T-0L is the lowest first tangential mode and
only loses its acoustic kinetic energy to the higher modes. On the other hand, the combined
first tangential modes are able to receive energy from the adjacent lower modes and pass
it to the adjacent higher modes. Since the eigenvalue s is the ratio of the acoustic kinetic
energy to the acoustic potential energy, the eigenvalue reduction by the density variation
will be largest for the mode 1T-0L. For the same reason, all of the pure transverse modes
are expected to have very large reductions of the eigenvalues if a considerable longitudinal
density variation exists. For the same density profile in equation (37), the additional results
of the eigenvalues for higher transverse modes are shown in Table 1. The density correction
for the pure transverse modes increases for higher transverse modes and can be larger than
50%. On the other hand, the combined modes all have almost the same percentage
corrections.

As seen from Table 1, acoustic frequencies of distributed media are always smaller than
those of uniform media. A simple alternative explanation of this phenomenon can be
obtained by considering one-dimensional wave propagation in which an acoustic wave is
traveling from x=0 to x=1. Let the sound speed of the medium be given by

Figure 4. Longitudinal profiles of the acoustic pressure for the pure and combined first tangential modes: ——,
1T-0L; · · · · , 1T-1L; – – – –, 1T-2L; — – — – — , 1T-3L.
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a= ā{1+ of(x)}, where o is a small parameter, and ā is the averaged sound speed, so that
f1
0 f(x) dx=0. The time required for the acoustic wave to complete a round trip is

t=2 g
1

0

dx
ā{1+ of(x)}1 2

ā 01+ o2 g
1

0

f 2 dx1, (41)

where terms of order higher than o2 are ignored. Since the acoustic frequency in this system
is proportional to the number of round trips that the acoustic wave can make in a unit
time, the acoustic frequency becomes

v=
2p

t
1 pā01− o2 g

1

0

f 2 dx1, (42)

Here the integral f1
0 f 2 dx is positive semi-definite and vanishes only if the medium is

uniform. A uniform medium thus always has the fastest acoustic oscillation, and the
acoustic frequency decreases with increasing non-uniformity of the medium.

4.4.    

Parametric results for small degrees of non-homogeneity can be obtained by using a
perturbation analysis. As an example, the density profile is assumed to be given by

1
rs

=1− o cos pz, (43)

where o is the small parameter of expansion. The matrices Lij and Mij are expanded in the
form

Lij =L{0}
ij + oL{1}

ij , Mij =M{0}
ij . (44)

Then the matrices Lij and Mij are found to be

L{0}
ij =[k2

11 + (i−1)2p2]dij , M{0}
ij = dij ,

L{1}
ij =g

F

f

−k2
11 /z2

−[k2
11 + (i−1) (j−1)p2]/2

0

if ij=2,
if =i− j ==1 and ij$ 2,
otherwise.

(45)

The eigenvalues and eigenvectors are sought in the form,

sr = s{0}
r + os{1}

r + o2s{2}
r +· · · , ci,r = c{0}

i,r + oc{1}
i,r + o{2}

i,r +· · · . (46)

Substituting equations (44) through (46) into equation (32) and the orthonormality
condition, the eigenvalue problem at each order is obtained as

[L{0}
ij − s{0}

r dij ]c{0}
j,r =0, s

i

c{0}
i,r c{0}

i,r =1,

[L{0}
ij − s{0}

r dij ]c{1}
j,r = s{1}

r c{0}
i,r −L{1}

ij c{0}
j,r , s

i

c{1}
i,r c{0}

i,r =0,

[L{0}
ij − s{0}

r dij ]c{2}
j,r = s{2}

r c{0}
i,r + s{1}

r c{1}
i,r −L{1}

ij c{1}
j,r , s

i

[2c{2}
i,r c{0}

i,r + c{1}
i,r c{1}

i,r ]=0. (47)
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At the leading order, the eigenvalue and eigenvector are identical to those of the
Helmholtz equation, the r-th eigenpair being given by

s{0}
r = k2

11 + (r−1)2p2, c{0}
i,r =610 if i= r,

if i$ r.
(48)

For the first-order correction of the 1T-0L mode, consideration of the terms in the first
row (i=1, r=1) in the second of equation (47),

[L{0}
1j − s{0}

1 d1j ]c{1}
j,1 = 0, s{1}

1 c{0}
1,1 = s{1}

1 , L{1}
1j c{0}

j,1 = 0,

shows that the first-order correction for the eigenvalue, s{1}
1 , is zero. Comparison of the

second row yields

c{1}
2,1 =

k2
11

z2p2
, (49)

while the other components of the eigenvector are found to be zero. As discussed in the
previous section, the first non-trivial correction for the eigenvalue is of order o2, while the
non-trivial correction for the eigenvector is of order o. The second-order correction can
be obtained in a similar way to be

s{2}
1 =−

k4
11

2p2, c{2}
i,1 =g

F

f

−k4
11 /4p4

k4
11 [k2

11 +2p2]/8z2p4

0

if i=1,
if i=3,
otherwise.

(50)

With an accuracy up to order o3, the eigenvalue and eigenvector for the first tangential
mode are then given by

1− o2k4
11 /4p4

ok2
11 /z2p2

s1 = k2
11 01− o2 k2

11

2p2 + · · ·1, ci,1 =G
G

G

G

G

G

G

F

f

o2k2
11 [k2

11 +2p2]/8z2p4 G
G

G

G

G

G

G

J

j

. (51)

O(o3)
···

Comparisons of these three-term perturbation solutions with the numerical solutions are
made here for o=1/3(rmax /rmin =2) and o=3/4(rmax /rmin =7). The axial distributions of
the acoustic pressure amplitudes are shown in Figure 5. For o=1/3, an excellent agreement
between the perturbation solution and numerical solution is found for the entire axial
co-ordinate. On the other hand, the agreement for o=3/4 is seen to be much worse,
although the feature that the acoustic amplitude of head pressure is higher than that of
tail pressure is properly captured in the perturbation analysis. Figure 6 shows comparison
of the eigenvlaues and demonstrates excellent agreement for the entire range of o. However,
the good agreement here for o near unity is fortuitous in that it does not extend to higher
modes.

The same method can be applied to analyze the effect of the variation in the adiabatic
compressibility by assuming that the profiles of the properties are given by

ks =1+ o cos pz,
1
rs

=1. (52)
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Figure 5. Comparison of the acoustic pressure profiles obtained by the numerical solution and three-term
perturbation solution for the first tangential mode (1T-0L) with o=1/3 and 3/4. ——, Numerical; – – – –,
perturbation.

With details omitted for brevity, the eigenvalue and eigenvector for the first tangential
mode are found with an accuracy of up to order o3 to be

1− o2k4
11 /4p4

ok2
11 /z2p2

s1 = k2
11 01− o2 k2

11

2p2 + · · ·1, ci,1 =G
G

G

G

G

F

f

o2k4
11 /8z2p4

G
G

G

G

G

J

j

. (53)

···

Here the second-order correction for the eigenvalue from variation of the adiabatic
compressibility is found to be identical to that from variation of the density. The first-order
correction for the eigenvector shows that the acoustic pressure amplitude is higher in the
region of high compressibility. The behavior can be understood by considering the
minimizing action of the functional given in equation (23). When the profile of ks is not
uniform, minimization of the functional can be achieved by distributing the integrand of
the denominator, i.e., ks c

2, more unevenly. Therefore, the acoustic pressure amplitude
tends to be higher in the region where ks is larger.

The same perturbation method can be applicable to higher modes. However, the
effectiveness of the perturbation method deteriorates very rapidly for higher modes. The
correction terms become larger, and more terms in the expansion are needed. However,
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for the lower modes, such as the first tangential mode, the perturbation method is found
to be a satisfactory approximation method even for realistically large property variations.
This is especially noteworthy because the lower modes are of greater practical importance
for combustion instabilities.

4.5.       

In liquid-propellant rocket engines, the excited acoustic modes usually begin with the
smallest eigenvalue. Most of the modes observed in engines with moderate chamber aspect
ratios are pure tangential modes, since their eigenvalues are smaller than those of combined
modes. For these pure tangential modes, variation of the axial density profile can
significantly influence combustion instability. The present analysis for pure tangential
modes shows that the acoustic pressure and velocity amplitudes near the injectors are much
larger than those near the nozzle. In order to investigate the effect of the longitudinal
mean-density variation on acoustic amplification, we may write the linear amplification
rate a as [3, 23]

a=gV

q1 &1 dV=gV

Rp &2
1 dV+gV

Ry · v1 &1 dV, (54)

where the leading-order fluctuation of the volumetric heat release rate q1 in equation (11)
is decomposed into contributions from the pressure response Rp and from the velocity

Figure 6. Comparison of the eigenvalues obtained by the numerical solution and three-term perturbation
solution for the first tangential mode (1T-0L). ——, s: numerical; – – – –, s: perturbation; · · · · · , rmax /rmin .
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Figure 7. Schematic diagram of liquid propellant rocket engine with acoustic cavity around circular side wall.

response Ry as q1 =Rp &1 +Ry · v1. If spatial distributions of Rp and Ry can be obtained,
then the present results can be used to evaluate the integrals in equation (54) and thereby
to determine the amplification rate. In general, both the acoustic amplitude and the values
of Rp and Ry tend to be greatest upstream for pure tangential modes. Therefore, it may
be concluded from the present study that contributions to their linear growth rates come
mainly from the region near the injector.

The more accurate acoustic pressure profiles provide useful information in determining
the lengths of baffles or acoustic liners needed to suppress instability. Since the linear
damping rate increases with increasing acoustic amplitude, it is more effective to install
the damping devices where the acoustic pressure and velocity variations are larger. The
present study suggests optimum lengths of about 25% of the chamber length. Another
strategy for achieving a damping effect is to try to shift the region of high acoustic pressure
out of the combustion zone by adding a high-density cavity to the chamber, perhaps by
placing an acoustic cavity around the corner of the injector assembly at the side wall, as
shown in Figure 7. Cooling of the cavity to maintain higher density could also be helpful.
These conclusions follow from the general ideas developed here concerning density effects,
ideas that complement those based on liner admittance, for example.

5. CONCLUDING REMARKS

The present analysis deals with effects of spatial variations of the density and adiabatic
compressibility (or sound speed) on the acoustic eigenmodes in combustion chambers. The
variations of those properties arise from a variety of sources such as progress of the
combustion and evaporation of liquid fuels. The variational method employed here states
that an eigenvalue, proportional to the square of an acoustic frequency, is the ratio of the
kinetic acoustic energy to the static acoustic energy and that the associated eigenfunction
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is the minimizing function of this ratio. Application to longitudinal property variations
showed appreciable effects on frequencies and modes shapes.

Although our interest in the present analysis was aroused by questions about acoustics
in liquid-propellant rocket engines, the same method can be applied to other combustion
devices, such as pulse combustors and waste incinerators, in which acoustic pressure
oscillation plays an essential role to enhance the performance. In these devices, the acoustic
characteristics can be tailored by distributing properly the heat source or modifying
boundary conditions, and these effects can be analyzed by the variational method
demonstrated in here. In view of recent developments in generation of admissible test
functions for complicated configurations [30], the variational method is also applicable to
addressing effects of the complicated geometry that may arise from baffles, supersonic
nozzles, or non-uniform regression of solid fuels in solid-propellant or hybrid rocket
engines.

The experimental results of density-profile and acoustic-profile measurements, near the
bifurcation condition of acoustic instabilities of rocket engines, scarcely exist because
acoustic instabilities of rocket engines usually result in severe damages of the engines in
a very short time. In particular, density-profile measurement is further complicated by the
nature of two-phase flow in liquid-propellant rockets. In order to obtain reliable
measurements of the acoustic eigenmodes in rocket engines, it might be helpful to use a
relatively low-energy rocket engines, such as small scale gaseous rocket engines. In this type
of rocket engines, a scalar measurement, such as temperature measurement, may be able
to yield the profiles of complete scalar-field variables by utilizing the definition of the
mixture fraction. Therefore, the analytic results of linear and non-linear stability analyses
can be more easily compared with the experimental results.
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APPENDIX A: FLUID PROPERTIES IN MULTIPHASE MIXTURES

Consider a multiphase system consisting of a number of liquid phases dispersed in an
ideal-gas mixture, and let r̃ji denote the mass of chemical species i in phase j per unit volume
of phase j and aj the volume fraction of phase j. Generally j= g, f, o denotes gas, fuel and
oxidizer streams, respectively, although j= g only, with ag =1, when the flow is at totally
supercritical conditions. With N chemical species in the system, the density of phase j,
denoted by r̃j , and the total density, denoted by r̃, are

r̃j = s
N

i=1

r̃ji , r̃= s
j

aj r̃j . (A1)
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From the above definitions, we are able to define the mass fractions, namely

Yj =
aj r̃j

r̃
, Yji =

aj r̃ji

r̃
, with s

j

Yj =1, s
i

Yji =Yj , (A2)

where Yj is the mass fraction of phase j, and Yji is that of species i in phase j.
To consider the overall frozen sound speed, we first write the overall density as

r̃=
m̃
V	

=

s
j

m̃j

s
j

V	 j

, (A3)

where m̃j is the mass of phase j in a small control volume V	 and V	 j is the volume of phase
j in that control volume. In the frozen sound speed, the differential operator acts only on
the V	 j ’s, so that

1
ã2

f
=01r̃

1p̃1s̃,Yji

=−s
j

m̃
V	 2 01V	 j

1p̃ 1s̃,Yji

, (A4)

where s̃ is the total entropy per unit mass. From the definition of the frozen sound speed
of phase

1
ã2

f, j
=−

m̃j

V	 2
j 01V	 j

1p̃ 1s̃,Yji

, (A5)

the overall frozen sound is expressed as

1
ã2

f
= s

j

a2
j

Yj

1
ã2

f, j
. (A6)

In liquid-propellant rocket motors, the volume fraction of each liquid phase is usually
small, and the sound speed is higher in the liquid phase than in the gas phase, so that the
overall sound speed can be approximated as being determined by that of the gas phase
only. Since the gas phase is assumed to be an ideal-gas mixture, the overall frozen sound
speed is expressed as

ã2
f 1Yg ã2

f,g

a2
g

1Yg gg R	 T	 g

a2
g

, (A7)

where T	 g is the gas temperature, g is the ratio of the specific heat at constant pressure to
that at constant volume, and R	 is the gas constant per unit mass for the gas phase.

The adiabatic compressibility k̃f in equation (2) is then correspondingly approximated
as

k̃f =
1

r̃ã2
f
1Yg

ag

1
r̃g ã2

f
1 ag

gg p̃g
, (A8)

where p̃g is the pressure in the gas phase, and use is made of equations (A2) and (A7) for
the second and third approximations, respectively. Since the pressure in the gas phase is
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almost constant throughout the rocket chamber, the adiabatic compressibility is
proportional mainly to the volume fraction of the gas phase.

APPENDIX B: NOMENCLATURE

D chamber diameter
F momentum source
L rocket-chamber length
L differential operator defined in equation (20)
Lij matrix form of the operator L as defined in equation (31)
M Mach number as defined in equation (5)
M weighting function defined in equation (20)
Mij matrix form of the weighting function M as defined in equation (31)
Q energy source
R Rayleigh quotient as defined in equations (27) or (30)
V total volume of integration domain
V integration domain illustrated in Figure 1
a sound speed
e acoustic energy as defined in equation (39)
f acoustic part of momentum source as shown in equation (11)
k wave number
m area-averaged axial mass flux
n unit outward normal vector at the boundary
p pressure
& acoustic pressure as expanded in equation (11)
q acoustic part of energy source as shown in equation (11)
r radial co-ordinate
t time co-ordinate
u velocity vector
v acoustic velocity vector as expanded in equation (11)
x spatial co-ordinate vector
z longitudinal co-ordinate

Greek symbols
a linear amplification rate
o small expansion parameter for acoustic amplitude
e small expansion parameter for sound speed or density variation
u azimuthal co-ordinate
k line alignment adiabatic compressibility
l non-dimensional acoustic frequency as defined in equation (16)
r density
7 acoustic part of density as shown in equation (11)
s0 l2 eigenvalue of the modified Helmholtz equation
c amplitude of the acoustic pressure oscillation
v acoustic frequency

Superscripts
( ˜ ) dimensional quantities
()(n) n-dimensional subspace of admissible functions
(){0}, . . . expansion orders associated with o

Subscripts
()0 volume-averaged reference state
()1, . . . expansion orders for the acoustic field
()f frozen state
()s steady state


